A New Strategy of Geometrical Biclustering for Microarray Data Analysis
نویسندگان
چکیده
In this paper, we present a new biclustering algorithm to provide the geometrical interpretation of similar microarray gene expression profiles. Different from standard clustering analyses, biclustering methodology can perform simultaneous classification on the row and column dimensions of a data matrix. The main object of the strategy is to reveal the submatrix, in which a subset of genes exhibits a consistent pattern over a subset of conditions. However, the search for such subsets is a computationally complex task. We propose a new algorithm, based on the Hough transform in the column-pair space to perform pattern identification. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our simulation studies show that the method is robust to noise and computationally efficient. Furthermore, we have applied it to a large database of gene expression profiles of multiple human organs and the resulting biclusters show clear biological meanings.
منابع مشابه
A new geometric biclustering algorithm based on the Hough transform for analysis of large-scale microarray data.
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we pre...
متن کاملIterated Local Search for Biclustering of Microarray Data
In the context of microarray data analysis, biclustering aims to identify simultaneously a group of genes that are highly correlated across a group of experimental conditions. This paper presents a Biclustering Iterative Local Search (BILS) algorithm to the problem of biclustering of microarray data. The proposed algorithm is highlighted by the use of some original features including a new eval...
متن کاملبه کارگیری خوشهبندی دوبعدی با روش «زیرماتریسهای با میانگین- درایههای بزرگ» در دادههای بیان ژنی حاصل از ریزآرایههای DNA
Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...
متن کاملA Framework to Analyze Biclustering Results on Microarray Experiments
Microarray technology produces large amounts of information to be manipulated by analysis methods, such as biclustering algorithms, to extract new knowledge. All-purpose multivariate data visualization tools are usually not enough for studying microarray experiments. Additionally, clustering tools do not provide means of simultaneous visualization of all the biclusters obtained. We present an i...
متن کاملA New Survey on Biclustering of Microarray Data
There are subsets of genes that have similar behavior under subsets of conditions, so we say that they coexpress, but behave independently under other subsets of conditions. Discovering such coexpressions can be helpful to uncover genomic knowledge such as gene networks or gene interactions. That is why, it is of utmost importance to make a simultaneous clustering of genes and conditions to ide...
متن کامل